134 research outputs found

    Transfer Function Optimization for Comparative Volume Rendering

    Full text link
    Direct volume rendering is often used to compare different 3D scalar fields. The choice of the transfer function which maps scalar values to color and opacity plays a critical role in this task. We present a technique for the automatic optimization of a transfer function so that rendered images of a second field match as good as possible images of a field that has been rendered with some other transfer function. This enables users to see whether differences in the visualizations can be solely attributed to the choice of transfer function or remain after optimization. We propose and compare two different approaches to solve this problem, a voxel-based solution solving a least squares problem, and an image-based solution using differentiable volume rendering for optimization. We further propose a residual-based visualization to emphasize the differences in information content

    Fast Neural Representations for Direct Volume Rendering

    Full text link
    Despite the potential of neural scene representations to effectively compress 3D scalar fields at high reconstruction quality, the computational complexity of the training and data reconstruction step using scene representation networks limits their use in practical applications. In this paper, we analyze whether scene representation networks can be modified to reduce these limitations and whether such architectures can also be used for temporal reconstruction tasks. We propose a novel design of scene representation networks using GPU tensor cores to integrate the reconstruction seamlessly into on-chip raytracing kernels, and compare the quality and performance of this network to alternative network- and non-network-based compression schemes. The results indicate competitive quality of our design at high compression rates, and significantly faster decoding times and lower memory consumption during data reconstruction. We investigate how density gradients can be computed using the network and show an extension where density, gradient and curvature are predicted jointly. As an alternative to spatial super-resolution approaches for time-varying fields, we propose a solution that builds upon latent-space interpolation to enable random access reconstruction at arbitrary granularity. We summarize our findings in the form of an assessment of the strengths and limitations of scene representation networks \changed{for compression domain volume rendering, and outline future research directions

    A Streamline-guided De-Homogenization Approach for Structural Design

    Full text link
    We present a novel de-homogenization approach for efficient design of high-resolution load-bearing structures. The proposed approach builds upon a streamline-based parametrization of the design domain, using a set of space-filling and evenly-spaced streamlines in the two mutually orthogonal direction fields that are obtained from homogenization-based topology optimization. Streamlines in these fields are converted into a graph, which is then used to construct a quad-dominant mesh whose edges follow the direction fields. In addition, the edge width is adjusted according to the density and anisotropy of the optimized orthotropic cells. In a number of numerical examples, we demonstrate the mechanical performance and regular appearance of the resulting structural designs, and compare them with those from classic and contemporary approaches.Comment: 10 pages, 13 figures, submitted to Journal, under revie

    Volumetric Isosurface Rendering with Deep Learning-Based Super-Resolution

    Full text link
    Rendering an accurate image of an isosurface in a volumetric field typically requires large numbers of data samples. Reducing the number of required samples lies at the core of research in volume rendering. With the advent of deep learning networks, a number of architectures have been proposed recently to infer missing samples in multi-dimensional fields, for applications such as image super-resolution and scan completion. In this paper, we investigate the use of such architectures for learning the upscaling of a low-resolution sampling of an isosurface to a higher resolution, with high fidelity reconstruction of spatial detail and shading. We introduce a fully convolutional neural network, to learn a latent representation generating a smooth, edge-aware normal field and ambient occlusions from a low-resolution normal and depth field. By adding a frame-to-frame motion loss into the learning stage, the upscaling can consider temporal variations and achieves improved frame-to-frame coherence. We demonstrate the quality of the network for isosurfaces which were never seen during training, and discuss remote and in-situ visualization as well as focus+context visualization as potential application

    Neural Fields for Interactive Visualization of Statistical Dependencies in 3D Simulation Ensembles

    Full text link
    We present the first neural network that has learned to compactly represent and can efficiently reconstruct the statistical dependencies between the values of physical variables at different spatial locations in large 3D simulation ensembles. Going beyond linear dependencies, we consider mutual information as a measure of non-linear dependence. We demonstrate learning and reconstruction with a large weather forecast ensemble comprising 1000 members, each storing multiple physical variables at a 250 x 352 x 20 simulation grid. By circumventing compute-intensive statistical estimators at runtime, we demonstrate significantly reduced memory and computation requirements for reconstructing the major dependence structures. This enables embedding the estimator into a GPU-accelerated direct volume renderer and interactively visualizing all mutual dependencies for a selected domain point

    Postprocessing of Ensemble Weather Forecasts Using Permutation-invariant Neural Networks

    Full text link
    Statistical postprocessing is used to translate ensembles of raw numerical weather forecasts into reliable probabilistic forecast distributions. In this study, we examine the use of permutation-invariant neural networks for this task. In contrast to previous approaches, which often operate on ensemble summary statistics and dismiss details of the ensemble distribution, we propose networks which treat forecast ensembles as a set of unordered member forecasts and learn link functions that are by design invariant to permutations of the member ordering. We evaluate the quality of the obtained forecast distributions in terms of calibration and sharpness, and compare the models against classical and neural network-based benchmark methods. In case studies addressing the postprocessing of surface temperature and wind gust forecasts, we demonstrate state-of-the-art prediction quality. To deepen the understanding of the learned inference process, we further propose a permutation-based importance analysis for ensemble-valued predictors, which highlights specific aspects of the ensemble forecast that are considered important by the trained postprocessing models. Our results suggest that most of the relevant information is contained in few ensemble-internal degrees of freedom, which may impact the design of future ensemble forecasting and postprocessing systems.Comment: Submitted to Artificial Intelligence for the Earth System
    corecore